Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 256, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451307

RESUMO

Homogentisate solanesyltransferase (HST) is a crucial enzyme in the plastoquinone biosynthetic pathway and has recently emerged as a promising target for herbicides. In this study, we successfully expressed and purified a stable and highly pure form of seven times transmembrane protein Chlamydomonas reinhardtii HST (CrHST). The final yield of CrHST protein obtained was 12.2 mg per liter of M9 medium. We evaluated the inhibitory effect on CrHST using Des-Morpholinocarbony Cyclopyrimorate (DMC) and found its IC50 value to be 3.63 ± 0.53 µM, indicating significant inhibitory potential. Additionally, we investigated the substrate affinity of CrHST with two substrates, determining the Km values as 22.76 ± 1.70 µM for FPP and 48.54 ± 3.89 µM for HGA. Through sequence alignment analyses and three-dimensional structure predictions, we identified conserved amino acid residues forming the active cavity in the enzyme. The results from molecular docking and binding energy calculations indicate that DMC has a greater binding affinity with HST compared to HGA. These findings represent substantial progress in understanding CrHST's properties and potential for herbicide development. KEY POINTS: • First high-yield transmembrane CrHST protein via E. coli system • Preliminarily identified active cavity composition via activity testing • Determined substrate and inhibitor modes via molecular docking.


Assuntos
Chlamydomonas reinhardtii , Herbicidas , Escherichia coli/genética , Simulação de Acoplamento Molecular , Proteínas de Membrana , Aminoácidos , Chlamydomonas reinhardtii/genética , Herbicidas/farmacologia , Fenilacetatos
2.
J Agric Food Chem ; 72(8): 3884-3893, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375801

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Benzimidazóis , Herbicidas , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/farmacologia , Herbicidas/química , Arabidopsis/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
J Agric Food Chem ; 71(49): 19396-19407, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38035573

RESUMO

Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Fungicidas Industriais , Herbicidas , Fungicidas Industriais/farmacologia , 4-Hidroxifenilpiruvato Dioxigenase/química , Herbicidas/química , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Relação Estrutura-Atividade
4.
Structure ; 31(12): 1604-1615.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37794595

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as a target for treating type I tyrosinemia and other diseases with defects in tyrosine catabolism. Only one commercial drug, 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), clinically treat type I tyrosinemia, but show some severe side effects in clinical application. Here, we determined the structure of human HPPD-NTBC complex, and developed new pyrazole-benzothiadiazole 2,2-dioxide hybrids from the binding of NTBC. These compounds showed improved inhibition against human HPPD, among which compound a10 was the most active candidate. The Absorption Distribution Metabolism Excretion Toxicity (ADMET) predicted properties suggested that a10 had good druggability, and was with lower toxicity than NTBC. The structure comparison between inhibitor-bound and ligand-free form human HPPD showed a large conformational change of the C-terminal helix. Furthermore, the loop 1 and α7 helix were found adopting different conformations to assist the gating of the cavity, which explains the gating mechanism of human HPPD.


Assuntos
Herbicidas , Tiadiazóis , Tirosinemias , Humanos , Tirosinemias/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Pirazóis/farmacologia , Inibidores Enzimáticos/farmacologia
5.
Redox Biol ; 63: 102751, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216701

RESUMO

Catalase (CAT) is an important antioxidant enzyme that breaks down H2O2 into water and oxygen. Inhibitor-modulating CAT activity in cancer cells is emerging as a potential anticancer strategy. However, the discovery of CAT inhibitors towards the heme active center located at the bottom of long and narrow channel has made little progress. Therefore, targeting new binding site is of great importance for the development of efficient CAT inhibitors. Here, the first NADPH-binding site inhibitor of CAT, BT-Br, was designed and synthesized successfully. The cocrystal structure of BT-Br-bound CAT complex was determined with a resolution of 2.2 Å (PDB ID:8HID), which showed clearly that BT-Br bound at the NADPH-binding site. Furthermore, BT-Br was demonstrated to induce ferroptosis in castration-resistant prostate cancer (CRPC) DU145 cells and eventually reduce CRPC tumors in vivo effectively. The work indicates that CAT has potential as a novel target for CRPC therapy based on ferroptosis inducing.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Catalase/genética , Catalase/metabolismo , NADP/metabolismo , Peróxido de Hidrogênio , Antioxidantes , Sítios de Ligação , Linhagem Celular Tumoral
6.
J Agric Food Chem ; 71(14): 5783-5795, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36977356

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most promising herbicide targets for the development of agricultural chemicals owing to its unique mechanism of action in plants. We previously reported on the co-crystal structure of Arabidopsis thaliana (At) HPPD complexed with methylbenquitrione (MBQ), an inhibitor of HPPD that we previously discovered. Based on this crystal structure, and in an attempt to discover even more effective HPPD-inhibiting herbicides, we designed a family of triketone-quinazoline-2,4-dione derivatives featuring a phenylalkyl group through increasing the interaction between the substituent at the R1 position and the amino acid residues at the active site entrance of AtHPPD. Among the derivatives, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(1-phenylethyl)quinazoline-2,4(1H,3H)-dione (23) was identified as a promising compound. The co-crystal structure of compound 23 with AtHPPD revealed that hydrophobic interactions with Phe392 and Met335, and effective blocking of the conformational deflection of Gln293, as compared with that of the lead compound MBQ, afforded a molecular basis for structural modification. 3-(1-(3-Fluorophenyl)ethyl)-6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (31) was confirmed to be the best subnanomolar-range AtHPPD inhibitor (IC50 = 39 nM), making it approximately seven times more potent than MBQ. In addition, the greenhouse experiment showed favorable herbicidal potency for compound 23 with a broad spectrum and acceptable crop selectivity against cotton at the dosage of 30-120 g ai/ha. Thus, compound 23 possessed a promising prospect as a novel HPPD-inhibiting herbicide candidate for cotton fields.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Herbicidas , Herbicidas/química , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Arabidopsis/metabolismo , Gossypium/metabolismo , Quinazolinas/química
7.
Trends Biochem Sci ; 48(6): 568-584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959016

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Herbicidas/farmacologia , Herbicidas/química , Catálise , Biologia
8.
J Agric Food Chem ; 71(2): 1170-1177, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599124

RESUMO

High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Produtos Biológicos , Herbicidas , Estrutura Molecular , Relação Estrutura-Atividade , 4-Hidroxifenilpiruvato Dioxigenase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Herbicidas/química
9.
Trop Med Infect Dis ; 7(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36136620

RESUMO

Background: With the progress of urbanization, the mobility of people has gradually increased, which has led to the further spread of dengue fever. This study evaluated the transmissibility of dengue fever within districts and between different districts in Zhanjiang City to provide corresponding advice for cross-regional prevention and control. Methods: A mathematical model of transmission dynamics was developed to explore the transmissibility of the disease and to compare that between different regions. Results: A total of 467 DF cases (6.38 per 100,000 people) were reported in Zhanjiang City in 2018. In the model, without any intervention, the number of simulated cases in this epidemic reached about 950. The dengue fever transmissions between districts varied within and between regions. When the spread of dengue fever from Chikan Districts to other districts was cut off, the number of cases in other districts dropped significantly or even to zero. When the density of mosquitoes in Xiashan District was controlled, the dengue fever epidemic in Xiashan District was found to be significantly alleviated. Conclusions: When there is a dengue outbreak, timely measures can effectively control it from developing into an epidemic. Different prevention and control measures in different districts could efficiently reduce the risk of disease transmission.

11.
J Agric Food Chem ; 70(22): 6644-6657, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618678

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a functional protein existing in almost all aerobic organisms. In the field of agricultural chemicals, HPPD is acknowledged to be one of the crucial targets for herbicides at present due to its unique bio-function in plants. In the Auto Core Fragment in silico Screening (ACFIS) web server, a potential HPPD inhibitor featuring 1,2,3-benzotriazine-4-one was screened out via a pharmacophore-linked fragment virtual screening (PFVS) method. Molecular simulation studies drove the process of "hit-to-lead" optimization, and a family of 1,2,3-benzotriazine-4-one derivatives was synthesized. Consequently, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-5-methyl-3-(2-methylbenzyl)benzo[d][1,2,3]triazin-4(3H)-one (15bu) was identified to be the best HPPD inhibitor (IC50 = 36 nM) among the 1,2,3-benzotriazine-4-one derivatives, which had over 8-fold improvement of enzyme inhibition compared with the positive control mesotrione (IC50 = 289 nM). Crystallography information for the AtHPPD-15bu complex revealed several important interactions of the ligand bound upon the target protein, i.e., the bidentate chelating interaction of the triketone motif with the metal ion of AtHPPD, a tight π-π stacking interaction consisting of the1,2,3-benzotriazine-4-one moiety and two benzene rings of Phe-424 and Phe-381, and the polydirectional hydrophobic contacts consisting of the ortho-CH3-benzyl group of the core scaffold and some hydrophobic residues. Furthermore, compound 15bu displayed 100% inhibition against the five species of target weeds at the tested dosage, which was comparable to the weed control of mesotrione. Collectively, the fused 1,2,3-benzotriazine-4-one-triketone hybrid is a promising chemical tool for the development of more potent HPPD inhibitors and provides a valuable lead compound 15bu for herbicide innovation.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Relação Estrutura-Atividade , Triazinas , Controle de Plantas Daninhas
12.
J Am Chem Soc ; 143(38): 15674-15687, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542283

RESUMO

Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/química , Proteínas Mutantes/química , Arabidopsis/química , Catálise , Cristalografia por Raios X , Cinética , Fenômenos Mecânicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Relação Estrutura-Atividade , Termodinâmica
13.
Dalton Trans ; 50(27): 9450-9456, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34132720

RESUMO

Two new Keggin-type polyoxometalate (POM)-based metal-organic complexes (MOCs) H3[Cu2(4-dpye)2(PMo12O40)] (1) and H[Cu2(4-Hdpye)2(PMo12O40)(H2O)4]·2H2O (2) were constructed with a new N,N'-bis (4-pyrimidinecarboxamido)-1,2-ethane (4-H2dpye) ligand by the hydrothermal/solvothermal method. Complex 1 was a 2D layered structure constructed from 1D metal-organic chains [Cu(4-dpye)]n and Keggin-type [PMo12O40]3- polyoxoanions. Complex 2 displays a 3D supramolecular framework formed by discrete [PMo12O40]3- polyoxoanions and binuclear metal-organic loops [Cu2(4-Hdpye)2]. The electrocatalytic behaviors of carbon paste electrodes modified by complexes 1 and 2 (1-CPE and 2-CPE) were investigated. The 1-CPE and 2-CPE were used as electrochemical sensors to detect trace Cr(vi), and the low limits of detection (LOD) are 1.27 × 10-7 M for 1 and 1.71 × 10-7 M for 2, which are lower than the maximum allowable concentration of Cr(vi) in drinking water specified by the World Health Organization (WHO). In addition, the performances of complexes 1 and 2 modified carbon cloth electrodes (1-CC and 2-CC) as supercapacitor materials have also been studied. The influence of the structure on electrocatalytic and capacitor performances is discussed.

14.
J Agric Food Chem ; 69(20): 5734-5745, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33999624

RESUMO

Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 µM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 µM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Aminopiridinas , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Ácidos Fenilpirúvicos , Plantas Daninhas/metabolismo , Relação Estrutura-Atividade
15.
Yi Chuan ; 43(5): 459-472, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972216

RESUMO

Zi Cao is an important traditional medicinal plant resource in China. Shikonin and its derivatives, as the purple-red naphthoquinones among natural products of its roots, are commonly used clinically in the treatment of sores and skin inflammations. Over the past few decades, due to their highly effective multiple biological activities, pharmacological effects, good clinical efficacy and high utilization value, shikonin and its derivatives have attracted increasing attention of domestic and foreign researchers. For this reason, the wild plant germplasm resources have been suffering a grievous exploitation, leading to a serious threat to the habitat. With the development of the biosynthesis, molecular metabolism and biotechnology, as well as the continuous innovation of research methods on the biological activities and pharmacological effects of plant natural products, significant progress has been made in the research on the biosynthetic pathways and related regulatory genes of shikonin. The pharmacological action and its mechanism of shikonin have also been deeply elucidated, which greatly promoted the basic research and clinical application development of shikonin. In this review, we briefly introduce and analyze the classification of Zi Cao, structure and composition of natural shikonin and its biosynthesis pathway, functional genes related to the regulation of shikonin biosynthesis, and biological activities and pharmacological functions of shikonin. Finally, we address possible prospective for the trend on the future research and development of natural shikonin and its derivatives, hoping to provide a useful reference for the deep mining and development of medicinal natural products from important Chinese medicinal materials, and to promote the modern development of traditional Chinese medicine.


Assuntos
Produtos Biológicos , Plantas Medicinais , China , Raízes de Plantas , Estudos Prospectivos
16.
Yi Chuan ; 43(5): 487-500, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972218

RESUMO

Low pH with aluminum (Al) toxicity are the main limiting factors affecting crop production in acidic soil. Selection of legume crops with acid tolerance and nitrogen-fixation ability should be one of the effective measures to improve soil quality and promote agricultural production. The role of the rhizosphere microorganisms in this process has raised concerns among the research community. In this study, BX10 (Al-tolerant soybean) and BD2 (Al-sensitive soybean) were selected as plant materials. Acidic soil was used as growth medium. The soil layers from the outside to the inside of the root are bulk soil (BS), rhizosphere soil at two sides (SRH), rhizosphere soil after brushing (BRH) and rhizosphere soil after washing (WRH), respectively. High-throughput sequencing of 16S rDNA amplicons of the V4 region using the Illumina MiSeq platform was performed to compare the differences of structure, function and molecular genetic diversity of rhizosphere bacterial community of different genotypes of soybean. The results showed that there was no significant difference in alpha diversity and beta diversity in rhizosphere bacterial community among the treatments. PCA and PCoA analysis showed that BRH and WRH had similar species composition, while BS and SRH also had similar species composition, which indicated that plant mainly affected the rhizosphere bacterial community on sampling compartments BRH and WRH. The composition and abundance of rhizosphere bacterial community among the treatments were then compared at different taxonomic levels. The ternary diagram of phylum level showed that Cyanobacteria were enriched in WRH. Statistical analysis showed that the roots of Al-tolerant soybean BX10 had an enrichment effect on plant growth promoting rhizobacteria (PGPR), which included Cyanobacteria, Bacteroides, Proteobacteria and some genera and species related to the function of nitrogen fixation and aluminum tolerance. The rhizosphere bacterial community from different sampling compartments of the same genotype soybean also were selectively enriched in different PGPR. In addition, the functional prediction analysis showed that there was no significant difference in the classification and abundance of COG (clusters of orthologous groups of proteins) function among different treatments. Several COGs might be directly related to nitrogen fixation, including COG0347, COG1348, COG1433, COG2710, COG3870, COG4656, COG5420, COG5456 and COG5554. Al-sensitive soybean BD2 was more likely to be enriched in these COGs than BX10 in BRH and WRH, and the possible reason remains to be further investigated in the future.


Assuntos
Rizosfera , Solo , Alumínio , Raízes de Plantas , Microbiologia do Solo
17.
Inorg Chem ; 60(5): 3331-3337, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543933

RESUMO

In this work, a new α-γ-type [Mo8O26]4- anion was first synthesized and characterized by single-crystal X-ray diffraction analysis and was obtained by introducing molybdate to the synthesis of metal-organic complex (MOC) under hydrothermal conditions. An octamolybdate-based MOC, namely, {[Cu8(H2O)6](dpyh)4(α-γ-Mo8O26) }·(ß-Mo8O26)·8.5H2O (H2dpyh = N,N-bis(3-pyrazolamide)-1,2-hexahydrobenzene), was obtained. The α-γ-type [Mo8O26]4- anion was composed of four MoO6 octahedra and four MoO5 trigonal bipyramids by sharing their edges and corners. The title complex exhibited a 1D structure in which an α-γ-type [Mo8O26]4- anion was connected with [Cu4(dpyh)2] units in a staggered manner. Under optimized conditions, complex 1 as the catalyst can achieve a highly efficient conversion (more than 99%) of thioanisole within 30 min and above 99% selectivity toward sulfoxide. Furthermore, efficient catalytic oxidation of thioether derivatives was also performed with 1 as the catalyst. In addition, the stable electrochemical sensing performance and adsorption capacity toward organic dyes were tested.

18.
Pest Manag Sci ; 77(6): 2620-2625, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33460493

RESUMO

Herbicide resistance has become one of the foremost problems in crop production worldwide. New herbicides are required to manage weeds that have evolved resistance to the existing herbicides. However, relatively few herbicides with new modes of action (MOAs) have been discovered in the past two decades. Therefore, the discovery of new herbicides (i.e., new chemical classes or MOAs) remains a primary but ongoing strategy to overcome herbicide resistance and ensure crop production. In this mini-review, starting with the inherent characteristics of the target proteins and the inhibitor structures, we propose two strategies for the rational design of new herbicides and one computational method for the risk evaluation of target mutation-conferred herbicide resistance. The information presented here may improve the utilization of known targets and inspire the discovery of herbicides with new targets. We believe that these strategies may trigger the sustainable development of herbicides in the future. © 2021 Society of Chemical Industry.


Assuntos
Herbicidas , Produção Agrícola , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Daninhas/genética , Controle de Plantas Daninhas
19.
J Agric Food Chem ; 69(1): 459-473, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395281

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been recognized as one of the most promising targets in the field of herbicide innovation considering the severity of weed resistance currently. In a persistent effort to develop effective HPPD-inhibiting herbicides, a structure-guided strategy was carried out to perform the structural optimization for triketone-quinazoline-2,4-diones, a novel HPPD inhibitor scaffold first discovered in our lab. Herein, starting from the crystal structure of Arabidopsis thaliana (At)HPPD complexed with 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione (MBQ), three subseries of quinazoline-2,4-dione derivatives were designed and prepared by optimizing the hydrophobic interactions between the side chain of the core structure at the R1 position and the hydrophobic pocket at the active site entrance of AtHPPD. 6-(2-Hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)quinazoline-2,4(1H,3H)-dione (60) with the best inhibitory activity against AtHPPD was identified to be the first subnanomolar-range AtHPPD inhibitor (Ki = 0.86 nM), which significantly outperformed that of the lead compound MBQ (Ki = 8.2 nM). Further determination of the crystal structure of AtHPPD in complex with compound 60 (1.85 Å) and the binding energy calculation provided a molecular basis for the understanding of its high efficiency. Additionally, the greenhouse assay indicated that 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-propylquinazoline-2,4(1H,3H)-dione (28) and compound 60 showed acceptable crop safety against peanut and good herbicidal activity with a broad spectrum. Moreover, compound 28 also showed superior selectivity for wheat at the dosage of 120 g ai/ha and favorable herbicidal efficacy toward the gramineous weeds at the dosage of as low as 30 g ai/ha. We believe that compounds 28 and 60 have promising prospects as new herbicide candidates for wheat and peanut fields.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Silício/química , Silício/farmacologia , 4-Hidroxifenilpiruvato Dioxigenase/química , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Cinética , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Relação Estrutura-Atividade , Controle de Plantas Daninhas
20.
J Agric Food Chem ; 68(18): 5059-5067, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286826

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been identified as one of the most significant targets in herbicide discovery for resistant weed control. In a continuing effort to discover potent novel HPPD inhibitors, we adopted a ring-expansion strategy to design a series of novel pyrazole-quinazoline-2,4-dione hybrids based on the previously discovered pyrazole-isoindoline-1,3-dione scaffold. One compound, 3-(2-chlorophenyl)-6-(5-hydroxy-1,3-dimethyl-1H-pyrazole-4-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (9bj), displayed excellent potency against AtHPPD, with an IC50 value of 84 nM, which is approximately 16-fold more potent than pyrasulfotole (IC50 = 1359 nM) and 2.7-fold more potent than mesotrione (IC50 = 226 nM). Furthermore, the co-crystal structure of the AtHPPD-9bj complex (PDB ID 6LGT) was determined at a resolution of 1.75 Å. Similar to the existing HPPD inhibitors, compound 9bj formed a bidentate chelating interaction with the metal ion and a π-π stacking interaction with Phe381 and Phe424. In contrast, o-chlorophenyl at the N3 position of quinazoline-2,4-dione with a double conformation was surrounded by hydrophobic residues (Met335, Leu368, Leu427, Phe424, Phe392, and Phe381). Remarkably, the greenhouse assay indicated that most compounds displayed excellent herbicidal activity (complete inhibition) against at least one of the tested weeds at the application rate of 150 g of active ingredient (ai)/ha. Most promisingly, compounds 9aj and 9bi not only exhibited prominent weed control effects with a broad spectrum but also showed very good crop safety to cotton, peanuts, and corn at the dose of 150 g of ai/ha.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/enzimologia , Pirazóis/química , Quinazolinas/química , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Daninhas/química , Plantas Daninhas/efeitos dos fármacos , Pirazóis/farmacologia , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Controle de Plantas Daninhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...